# GetElementMatrix

This function gets an element's transform matrix. This contains 16 float values that multiplied to a point will give you the point transformed. It is most useful for matrix calculations such as calculating offsets. For further information, please refer to a tutorial of matrices in computer graphics programming.

 [[{{{image}}}|link=]] Note: The matrix returned by this function is not setup correctly for some calculations unless the legacy argument is set to false.
 [[{{{image}}}|link=]] Tip: For matrix manipulation which goes beyond the basic examples given on this page, see the Lua matrix library. If you are using MTA: SA 1.4 or higher, using the built-in matrix class is also recommended.

## Syntax

```table getElementMatrix ( element theElement [, bool legacy = true ] )
```

OOP Syntax Help! I don't understand this!

Method: element:getMatrix(...)
Variable: .matrix
Counterpart: setElementMatrix

### Required Arguments

• theElement: The element which you wish to retrieve the matrix for.

### Optional Arguments

• legacy: Set to false to return correctly setup matrix (i.e. Last column in the first 3 rows set to zero).

### Returns

Returns a multi-dimensional array (which can be transformed into a proper matrix class using Matrix.create method) containing a 4x4 matrix. Returns false if the element is not streamed in, and not a vehicle, ped or object.

## Example

This example creates a utility function that turns an offset into a position that is relative to the specified element.

```function getPositionFromElementOffset(element,offX,offY,offZ)
local m = getElementMatrix ( element )  -- Get the matrix
local x = offX * m[1][1] + offY * m[2][1] + offZ * m[3][1] + m[4][1]  -- Apply transform
local y = offX * m[1][2] + offY * m[2][2] + offZ * m[3][2] + m[4][2]
local z = offX * m[1][3] + offY * m[2][3] + offZ * m[3][3] + m[4][3]
return x, y, z                               -- Return the transformed point
end

-- Get the position of a point 3 units to the right of the element:
x,y,z = getPositionFromElementOffset(element,3,0,0)

-- Get the position of a point 2 units in front of the element:
x,y,z = getPositionFromElementOffset(element,0,2,0)

-- Get the position of a point 1 unit above the element:
x,y,z = getPositionFromElementOffset(element,0,0,1)

```

This example creates some more matrix utility functions

```function getMatrixLeft(m)
return m[1][1], m[1][2], m[1][3]
end
function getMatrixForward(m)
return m[2][1], m[2][2], m[2][3]
end
function getMatrixUp(m)
return m[3][1], m[3][2], m[3][3]
end
function getMatrixPosition(m)
return m[4][1], m[4][2], m[4][3]
end

local mat = getElementMatrix(element)  -- Get the matrix
x,y,z = getMatrixLeft(mat)     -- Get the matrix left direction
x,y,z = getMatrixForward(mat)  -- Get the matrix forward direction
x,y,z = getMatrixUp(mat)       -- Get the matrix up direction

```

This example function allows you to get the element matrix of an element that is not streamed in.

```function getElementMatrix(element)
local rx, ry, rz = getElementRotation(element, "ZXY")
local matrix = {}
matrix[1] = {}
matrix[1][1] = math.cos(rz)*math.cos(ry) - math.sin(rz)*math.sin(rx)*math.sin(ry)
matrix[1][2] = math.cos(ry)*math.sin(rz) + math.cos(rz)*math.sin(rx)*math.sin(ry)
matrix[1][3] = -math.cos(rx)*math.sin(ry)
matrix[1][4] = 1

matrix[2] = {}
matrix[2][1] = -math.cos(rx)*math.sin(rz)
matrix[2][2] = math.cos(rz)*math.cos(rx)
matrix[2][3] = math.sin(rx)
matrix[2][4] = 1

matrix[3] = {}
matrix[3][1] = math.cos(rz)*math.sin(ry) + math.cos(ry)*math.sin(rz)*math.sin(rx)
matrix[3][2] = math.sin(rz)*math.sin(ry) - math.cos(rz)*math.cos(ry)*math.sin(rx)
matrix[3][3] = math.cos(rx)*math.cos(ry)
matrix[3][4] = 1

matrix[4] = {}
matrix[4][1], matrix[4][2], matrix[4][3] = getElementPosition(element)
matrix[4][4] = 1

return matrix
end
```

Click to collapse [-]
Server side: Front to Front

-- create a Ped (0, 0, 5, 0) and put the player to 10 m of distance, front to front

```function startedThisResource (res)
if getThisResource() == res then
local thePed = createPed ( 287, 0, 0, 5, 0)
local matrix = getElementMatrix(thePed)
nx = 0 * matrix[1][1] + 10 * matrix[2][1] + 0 * matrix[3][1] + 1 * matrix[4][1]
ny = 0 * matrix[1][2] + 10 * matrix[2][2] + 0 * matrix[3][2] + 1 * matrix[4][2]
nz = 0 * matrix[1][3] + 10 * matrix[2][3] + 0 * matrix[3][3] + 1 * matrix[4][3]
for a, z in ipairs(getElementsByType("player")) do
setElementPosition (z, nx, ny, nz)
local playerX, playerY, playerZ = getElementPosition(z)
local pedX, pedY, pedZ = getElementPosition(thePed)
local rotZ = findRotation( playerX, playerY, pedX, pedY )
setElementRotation(z, 0, 0, rotZ)
end
end
end