New coding guidelines: Difference between revisions

From Multi Theft Auto: Wiki
Jump to navigation Jump to search
(Created page with "This page contains new and unofficial coding guidelines. <br><br> <ol> <li>Use '''const''' and '''constexpr''' wherever possible.</li> <li>Use the '''noexcept''' specifier whenever possible.</li> <li>Use '''nullptr''' instead of '''NULL''' when setting or returning a null pointer.</li> <li>Functions that only return a value should be placed in header files. For example, instead of: <syntaxhighlight lang="cpp"> // In .cpp file int GetGameSpeed() { return m_iGameSp...")
(No difference)

Revision as of 14:55, 19 June 2024

This page contains new and unofficial coding guidelines.

  1. Use const and constexpr wherever possible.
  2. Use the noexcept specifier whenever possible.
  3. Use nullptr instead of NULL when setting or returning a null pointer.
  4. Functions that only return a value should be placed in header files. For example, instead of:
    // In .cpp file
    int GetGameSpeed()
    {
        return m_iGameSpeed;
    }
    

    Do it in the header:

    int GetGameSpeed() const { return m_iGameSpeed; }
    
  5. Use early-return to improve code readability. For example, instead of:
    bool CStaticFunctionsDefinition::RespawnObject(CElement* pElement)
    {
        if (IS_OBJECT(pElement))
        {
            CObject* pObject = static_cast<CObject*>(pElement);
            if (pObject)
            {
                pObject->Respawn();
                return true;
            }
        }
    
        return false;
    }
    

    It's clearer to do:

    bool CStaticFunctionsDefinition::RespawnObject(CElement* pElement)
    {
        if (!IS_OBJECT(pElement))
            return false;
    
        CObject* pObject = static_cast<CObject*>(pElement);
        if (!pObject)
            return false;
    
        pObject->Respawn();
    
        return true;
    }
    
  6. Always strive to maintain code readability. If a type is lengthy to write, you can use auto to improve readability.
    CDeatchmatchObject* pObject = static_cast<CDeathmatchObject*>(pEntity);
    // Can be
    auto* pObject = static_cast<CDeathmatchObject*>(pEntity);
    
  7. If you use addresses of values or functions, document what the address is with a comment or use a #define macro.
    float CWeatherSA::GetWetRoads() const
    {
        return *(float*)0xC81308; // CWeather::WetRoads
    }
    
    // In the header
    #define NUM_WETROADS    0xC81308
    
    // In the .cpp
    float CWeatherSA::GetWetRoads() const
    {
        return *(float*)NUM_WETROADS;
    }
    

    Both methods are OK.

  8. For readability, if a loop or condition is short, omit curly braces. For example, instead of:
    if (!bStillRunning)
    {
        StopMoving();
    }
    

    You can do:

    if (!bStillRunning)
        StopMoving();
    

    However, do not omit curly braces for larger blocks:

    for (dont)
        for (do)
            for (this)
                ...
    
  9. Use range-based for loops when possible.
    std::vector<int> vec; // Example std container
    
    // Bad:
    for (std::vector<int>::iterator it = vec.begin(); it != vec.end(); it++)
    
    // Good:
    for (const auto& v : vec)
    for (const int& v : vec)
    
    // In case of maps you can use structured binding:
    std::map<std::string, int> myMap;
    for (const auto& [k, v] : myMap)
    
    // There are situations where you must use old style loops, in this case use `auto`
    for (auto it = vec.begin(); it != vec.end(); it++)
    
  10. Define and call functions without arguments simply with empty parentheses.
    // Bad
    void MyFunction(void);
    MyFunction(void);
    
    // Good
    void MyFunction();
    MyFunction();
    
  11. When possible, use a logical condition for code readability. Instead of:
    const CPositionRotationAnimation* CObject::GetMoveAnimation()
    {
        if (IsMoving())
        {
            return m_pMoveAnimation;
        }
        else
        {
            return nullptr;
        }
    }
    

    Do:

    const CPositionRotationAnimation* CObject::GetMoveAnimation()
    {
        return (IsMoving() ?  m_pMoveAnimation : nullptr);
    }
    
  12. Use lower camel case for variable names of types like custom structs and enums:
    SSomeStruct   valueOne;
    ESomeEnum     m_valueTwo;
    
  13. Functions and classes use UpperCamelCase:
    void UpperCamelCase();
    class Vector;
    
  14. Use Hungarian notation for variable names when you can. It's not mandatory but helps with code readability.
    float         fValue;               // Local variable
    unsigned char m_ucValue;            // Class member variable
    char          ms_cValue;            // Class static member variable
    bool          g_bCrashTwiceAnHour;  // Global variable
    char*         szUsername;           // Zero-terminated string
    SString       strUsername;          // String
    CVector       vecPosition;          // 3D Vector
    
  15. In C++, prefer using types from the std namespace provided by appropriate headers (such as <cstdint>, <cstddef>, etc.). This is recommended for several reasons:
    • Namespace Safety: Types defined in these headers are encapsulated within the std namespace, which helps avoid naming conflicts with user-defined types or macros. This follows the C++ standard practice of minimizing global namespace pollution.
    • Consistency and Readability: Using std:: types ensures consistency and improves code readability by making it clear that these types are part of the standard library.
    • C++ Standard Compliance: The C++ standard (C++11 and later) includes headers like <cstdint> and <cstddef>, which provide standardized types:
    • <cstdint> includes exact-width integer types such as 'std::uint32_t, std::int32_t, etc.
    • <cstddef> includes types like std::size_t, std::ptrdiff_t, etc.
    • Portability and Maintainability: Using these headers makes your code more portable across different compilers and platforms, as it guarantees that these types are defined in a standardized way. This is especially important in a C++ environment, where the focus is on maintainability and cross-platform compatibility.
    By adhering to these practices, you ensure that your codebase remains clean, consistent, and adheres to modern C++ standards, which ultimately contributes to better maintainability and fewer integration issues.